Godot Version
4.3 rc3
Question
So I took this official code example and converted it to use this algorithm, but I get these errors.
I suspect it’s in the final line of the script, because if I just put the quoted parts into a .gdshader they work, but does anyone know what’s wrong with it?
# https://github.com/patriciogonzalezvivo/lygia/blob/main/generative/snoise.glsl
@tool
extends VisualShaderNodeCustom
class_name VisualShaderNodeSimplexNoise3D
func _get_name():
return "SimplexNoise3D"
func _get_category():
return "LygiaShaderNodes"
func _get_description():
return "Simplex Noise 3D function (by Stefan Gustavson, Ian McEwan)"
func _init():
set_input_port_default_value(0, Vector3(0, 0, 0))
func _get_return_icon_type():
return VisualShaderNode.PORT_TYPE_VECTOR_3D
func _get_input_port_count():
return 1
func _get_input_port_name(port):
return "position"
func _get_input_port_type(port):
return VisualShaderNode.PORT_TYPE_VECTOR_3D
func _get_output_port_count():
return 1
func _get_output_port_name(port):
return "result"
func _get_output_port_type(port):
return VisualShaderNode.PORT_TYPE_VECTOR_3D
func _get_global_code(mode):
return """
vec3 mod289_3(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289_4(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289_4(((x * 34.0) + 1.0) * x);
}
vec4 taylorInvSqrt(vec4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
float snoise(vec3 v) {
const vec2 C = vec2(1.0/6.0, 1.0/3.0);
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy));
vec3 x0 = v - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min(g.xyz, l.zxy);
vec3 i2 = max(g.xyz, l.zxy);
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289_3(i);
vec4 p = permute(permute(permute(i.z + vec4(0.0, i1.z, i2.z, 1.0))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_); // mod(j,N)
vec4 x = x_ * ns.x + ns.yyyy;
vec4 y = y_ * ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4(x.xy, y.xy);
vec4 b1 = vec4(x.zw, y.zw);
vec4 s0 = floor(b0) * 2.0 + 1.0;
vec4 s1 = floor(b1) * 2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 42.0 * dot(m * m, vec4(dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3)));
}
"""
func _get_code(input_vars, output_vars, mode, type):
return output_vars[0] + " = vec3(snoise(vec3(%s)), snoise(vec3(%s.y - 19.1, %s.z + 33.4, %s.x + 47.2)), snoise(vec3(%s.z + 74.2, %s.x - 124.5, %s.y + 99.4)));" % [input_vars[0]]