|
|
|
 |
Reply From: |
siamak-s |
As godot-sky-asset plugin use fragment shader to generate the sky, I want to use shaders and not textures too. So I rewrote shader of above Youtube video and test it on a Sprite and I was successful.
Here is a shader for generating sky clouds with movement. Now I want to combine this shader with godot-sky-asset shader (atmosphere generation shader). Any one who help me?
Sky Clouds Shader
shader_type canvas_item;
float ha(float n) {
return fract(sin(n) * 758.5453);
}
float no(vec3 x) {
vec3 p = floor(x); vec3 f = fract(x);
float n = p.x + p.y * 57.0 + p.z * 800.0;
float res = mix(mix(mix(ha(n+0.0), ha(n+1.0), f.x), mix(ha(n+57.0), ha(n+58.0), f.x), f.y), mix(mix(ha(n+800.0), ha(n+801.0), f.x), mix(ha(n+857.0), ha(n+858.0), f.x), f.y), f.z);
return res;
}
float fbm(vec3 p) {
// float f = 0.3 * cos(TIME * 0.06);
float f = 0.3 * cos(0.06);
f += 0.50000 * no(p); p = p * 2.02;
f -= 0.25000 * no(p); p = p * 2.03;
f += 0.12500 * no(p); p = p * 2.01;
f += 0.06250 * no(p); p = p * 2.04;
f -= 0.03125 * no(p);
return f / 0.984375;
}
float cloud(vec3 p) {
p -= fbm(vec3(p.x, p.y, 0.0) * 0.27) * 2.27;
float a = 0.0;
a -= fbm(p * 3.0) * 2.2 - 1.1;
if (a < 0.0) { a = 0.0; a = a * a; }
return a;
}
void fragment() {
vec2 position = vec2(1) - UV;
position.y += 0.2;
vec2 coord = vec2((position.x - 0.5) / position.y, 1.0/(position.y + 0.2));
coord += TIME * 0.057 + 1000.0;
float q = cloud(vec3(coord * 1.0, 0.222));
vec3 col = vec3(0.2,0.3,0.6) + vec3(0.2*q, 0.4*q, 0.1*q);
COLOR = vec4(col, 1.0);
}
Atmosphere Shader (Inside godot-sky-asset)
shader_type canvas_item;
uniform float earth_radius_km = 6371;
uniform float atmo_radius_km = 6471;
uniform float cam_height_m = 1.8;
uniform vec3 sun_pos = vec3(0.0, 0.1, -0.5);
uniform float sun_intensity = 22.0;
uniform vec3 rayleigh_coeff = vec3(5.5, 13.0, 22.4); // we divide this by 100000
uniform float mie_coeff = 21.0; // we divide this by 100000
uniform float rayleigh_scale = 800;
uniform float mie_scale = 120;
uniform float mie_scatter_dir = 0.758;
uniform sampler2D night_sky : hint_black_albedo;
uniform mat3 rotate_night_sky;
// Atmosphere code from: https://github.com/wwwtyro/glsl-atmosphere
vec2 rsi(vec3 r0, vec3 rd, float sr) {
// ray-sphere intersection that assumes
// the sphere is centered at the origin.
// No intersection when result.x > result.y
float a = dot(rd, rd);
float b = 2.0 * dot(rd, r0);
float c = dot(r0, r0) - (sr * sr);
float d = (b*b) - 4.0*a*c;
if (d < 0.0) return vec2(100000.0,-100000.0);
return vec2(
(-b - sqrt(d))/(2.0*a),
(-b + sqrt(d))/(2.0*a)
);
}
vec3 atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g) {
float PI = 3.14159265358979;
int iSteps = 16;
int jSteps = 8;
// Normalize the sun and view directions.
pSun = normalize(pSun);
r = normalize(r);
// Calculate the step size of the primary ray.
vec2 p = rsi(r0, r, rAtmos);
if (p.x > p.y) return vec3(0,0,0);
p.y = min(p.y, rsi(r0, r, rPlanet).x);
float iStepSize = (p.y - p.x) / float(iSteps);
// Initialize the primary ray time.
float iTime = 0.0;
// Initialize accumulators for Rayleigh and Mie scattering.
vec3 totalRlh = vec3(0,0,0);
vec3 totalMie = vec3(0,0,0);
// Initialize optical depth accumulators for the primary ray.
float iOdRlh = 0.0;
float iOdMie = 0.0;
// Calculate the Rayleigh and Mie phases.
float mu = dot(r, pSun);
float mumu = mu * mu;
float gg = g * g;
float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu);
float pMie = 3.0 / (8.0 * PI) * ((1.0 - gg) * (mumu + 1.0)) / (pow(1.0 + gg - 2.0 * mu * g, 1.5) * (2.0 + gg));
// Sample the primary ray.
for (int i = 0; i < iSteps; i++) {
// Calculate the primary ray sample position.
vec3 iPos = r0 + r * (iTime + iStepSize * 0.5);
// Calculate the height of the sample.
float iHeight = length(iPos) - rPlanet;
// Calculate the optical depth of the Rayleigh and Mie scattering for this step.
float odStepRlh = exp(-iHeight / shRlh) * iStepSize;
float odStepMie = exp(-iHeight / shMie) * iStepSize;
// Accumulate optical depth.
iOdRlh += odStepRlh;
iOdMie += odStepMie;
// Calculate the step size of the secondary ray.
float jStepSize = rsi(iPos, pSun, rAtmos).y / float(jSteps);
// Initialize the secondary ray time.
float jTime = 0.0;
// Initialize optical depth accumulators for the secondary ray.
float jOdRlh = 0.0;
float jOdMie = 0.0;
// Sample the secondary ray.
for (int j = 0; j < jSteps; j++) {
// Calculate the secondary ray sample position.
vec3 jPos = iPos + pSun * (jTime + jStepSize * 0.5);
// Calculate the height of the sample.
float jHeight = length(jPos) - rPlanet;
// Accumulate the optical depth.
jOdRlh += exp(-jHeight / shRlh) * jStepSize;
jOdMie += exp(-jHeight / shMie) * jStepSize;
// Increment the secondary ray time.
jTime += jStepSize;
}
// Calculate attenuation.
vec3 attn = exp(-(kMie * (iOdMie + jOdMie) + kRlh * (iOdRlh + jOdRlh)));
// Accumulate scattering.
totalRlh += odStepRlh * attn;
totalMie += odStepMie * attn;
// Increment the primary ray time.
iTime += iStepSize;
}
// Calculate and return the final color.
return iSun * (pRlh * kRlh * totalRlh + pMie * kMie * totalMie);
}
// and our application
vec3 ray_dir_from_uv(vec2 uv) {
float PI = 3.14159265358979;
vec3 dir;
float x = sin(PI * uv.y);
dir.y = cos(PI * uv.y);
dir.x = x * sin(2.0 * PI * (0.5 - uv.x));
dir.z = x * cos(2.0 * PI * (0.5 - uv.x));
return dir;
}
vec2 uv_from_ray_dir(vec3 dir) {
float PI = 3.14159265358979;
vec2 uv;
uv.y = acos(dir.y) / PI;
dir.y = 0.0;
dir = normalize(dir);
uv.x = acos(dir.z) / (2.0 * PI);
if (dir.x < 0.0) {
uv.x = 1.0 - uv.x;
}
uv.x = 0.5 - uv.x;
if (uv.x < 0.0) {
uv.x += 1.0;
}
return uv;
}
void fragment() {
vec3 dir = ray_dir_from_uv(UV);
// determine our sky color
vec3 color = atmosphere(
dir
, vec3(0.0, earth_radius_km * 100.0 + cam_height_m * 0.1, 0.0)
, sun_pos
, sun_intensity
, earth_radius_km * 100.0
, atmo_radius_km * 100.0
, rayleigh_coeff / 100000.0
, mie_coeff / 100000.0
, rayleigh_scale
, mie_scale
, mie_scatter_dir
);
// Apply exposure.
color = 1.0 - exp(-1.0 * color);
// Mix in night sky (already sRGB)
if (dir.y > 0.0) {
float f = (0.21 * color.r) + (0.72 * color.g) + (0.07 * color.b);
float cutoff = 0.1;
vec2 ns_uv = uv_from_ray_dir(rotate_night_sky * dir);
color += texture(night_sky, ns_uv).rgb * clamp((cutoff - f) / cutoff, 0.0, 1.0);
}
COLOR = vec4(color, 1.0);
}